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Abstract. The atomic parity-violation (APV) parameter QW for a nucleus with n neutrons and z protons
has been included in the list of pseudo-observables accessible with the codes TOPAZ0 and ZFITTER.
In this way one can add the APV results in the LEP EWWG “global” electroweak fits, checking the
corresponding effect when added to the existing precision measurements.

1 Introduction

Recently we were asked to include atomic parity-violation
(hereafter APV) parameters in the list of pseudo-observ-
ables (hereafter PO) that are accessible with the FOR-
TRAN codes TOPAZ0 [1] and ZFITTER [2], so as to in-
clude the APV results in the LEP EWWG electroweak
fits.

The reason for this operation is that there are now
precise experiments measuring APV in cesium [3], at the
0.4% level, thallium [4], lead [5] and bismuth [6]. More-
over, according to [7], the uncertainties associated with
the atomic wave functions have been reduced to another
0.4% for cesium. For additional uncertainties associated
with the value of the tensor polarizability we refer to [8].
Note however that there is an intrinsic difference between
the PO at the Z resonance, e.g. ΓZ , σ0h, A0

FB etc, and the
APV parameters where the typical scale is dictated by the
limit of zero momentum transfer in the APV Hamiltonian.
This fact alone is the origin of a comparatively larger theo-
retical uncertainty which is due to our basic ignorance of
QCD corrections in this regime.

The investigation of APV has been the subject of a
number of studies made in the 80’s by Marciano and Sirlin
[9] and [10]. For TOPAZ0, which is based on the gener-
alized minimal subtraction scheme [11], it has been rela-
tively simple to include all recently computed higher-order
effects in the old MS calculation. For ZFITTER instead,
the authors have been able to produce a novel evalua-
tion of the APV parameters in the on mass-shell (OMS)
scheme. The current value for the weak charge is

QW(Cs) = −72.06 ± 0.28 ± 0.34 (theo.) (1)

For a recent evaluation of QW we refer, again, to [8] where
the program GAPP [12] has been used.
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2 Upgrading the MS calculation

The electron–quark parity-violating Hamiltonian at zero
momentum transfer will be conventionally parameterized
as follows:

HPV =
GF√

2
(C1uēγµγ5eūγµu + C2uēγµeūγµγ5u

+C1dēγµγ5ed̄γµd + C2dēγµed̄γµγ5d) . . . , (2)

where the ellipsis represents heavy quark terms and we
have factorized out the Fermi constant GF. In heavy atoms
the dominant part of parity violation is proportional to the
so-called weak charge QW

QW(Z,A) = 2[(Z + A)C1u + (2A − Z)C1d] . (3)

We have taken the calculation by Marciano and Sirlin
which is performed in the modified minimal subtraction
scheme (MS) and have extended it to include all higher-
order effects presently known. To summarize: the two-
loop leading contribution for the ρ-parameter [13], exact
O (ααS) corrections [14], O (

αα2
S

)
corrections to ρ [15],

next-to-leading two-loop heavy top corrections [16]. At
the same time, an attempt has been made to evaluate
the theoretical uncertainty at the level of electroweak and
of QCD corrections.

TOPAZ0 now returns, among all PO, the two quanti-
ties, C1u and C1d of (2). They are defined as follows:

C1u = −1
2
ρ′
PV

[
1 − 8

3
κ′
PV(0) sin2 θ̂(M2

W )
]
,

C1d =
1
2
ρ′
PV

[
1 − 4

3
κ′
PV(0) sin2 θ̂(M2

W )
]
, (4)

where sin2 θ̂(M2
W ) is the MS weak-mixing angle at the

scale µ = MW .
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We adopt a specific implementation of the re-summati-
on procedure where the pair MW and sin2 θ̂(M2

W ) is the
solution of a system of coupled non-linear equations that
include all available higher-order effects, as described in
Sect. 6.11 and 8 of [17]. Moreover,

ρ′
PV = ρ − α

2π

[
1 +

1
ŝ2

+ 4v̂eBp(np)

+
9

16ŝ2ĉ2

(
1 − 16

9
ŝ2

) (
1 + v̂2e

)]
,

κ′
PV(0) = κPV(0) − α

2πŝ2

[
9 − 8ŝ2

8ŝ2
− v̂e

6

(
ln

M2
Z

m2
e

+
1
6

)

+
(

9
4

− 4ŝ2
)

v̂eBp(np)

+
9

16ŝ2ĉ2

(
1
2
v̂e +

16
9
ŝ4

) (
1 + v̂2e

)]
, (5)

where v̂e = 1 − 4ŝ2, ŝ2 = sin2 θ̂(M2
W ) and where we have

two different treatments of the Z–γ boxes – perturbative
[9]

Bp = ln
M2

Z

m2 +
3
2
, m = mu = md = 75 MeV, (6)

and non-perturbative [10]

Bnp = K +
4
5

(ξ1)
p
B ,

K = M2
Z

∫ ∞

M2

du
u(u + M2

Z)

[
1 − αS(u)

π

]
,

(ξ1)
p
B = 2.55, (7)

where M is a mass scale representing the onset of the
asymptotic behavior, i.e. the regime where αS becomes
small. We observe a plateau of stability in K for M cen-
tered around 0.5 GeV and this is the numerical value used.
Furthermore we used the following form for the ρ, κ pa-
rameters [9]:

ρ = 1 +
α

4πŝ2

[
3

4ŝ2
ln ĉ2 − 7

4

+
3
4

m2
t

M2
W

(1 + δEW + δQCD)

+
3
4
h

(
ln(ĉ2/h)
ĉ2 − h

+
1
ĉ2

lnh

1 − h

)]
,

κPV(0) = 1 − α

2πŝ2
(8)

×

7

9
− ŝ2

3
+

Qf

3

∑
f

(
I(3)e − 2Qf ŝ

2
)

ln
m2

f

M2
W


 .

In the previous equation we have h = M2
H/M2

Z . The
strange quark mass is effectively chosen to be ms =
250 MeV so that (with effective mu = md = 75 MeV)
we recover the dispersive analysis for the Z–γ transition
where ΠZγ(0) is rewritten in terms of a dispersion relation

with the kernel connected to σ(e+e− → hadrons). In (8)
the δEW (QCD) are the LO+NLO electroweak (O (

α2
S + α3

S

)
QCD) correction to ρ. The evaluation of ρ and ŝ2 includes
the best available LO+NLO terms [17].

TOPAZ0 default is the perturbative formulation of the
factorized result of (4). There is the option of using some
additive formulation where

C1u = −1
2
ρ

[
1 − 8

3
κPV(0) sin2 θ̂(M2

W )
]

+ ∆u,

C1d =
1
2
ρ

[
1 − 4

3
κPV(0) sin2 θ̂(M2

W )
]

+ ∆d, (9)

where ∆u,d are obtained from (4) by expanding and by
neglecting terms of O (

α2
)
.

3 Atomic parity violation in OMS scheme

The old result of [9] has been completely re-derived in the
OMS scheme. Here, the technical problem is represented
by the extraction of the limit of zero momentum transfer
from the expressions that have been derived for the pro-
cess ee → tt̄ [18]. Here the process under consideration
is the t channel scattering ee → uu and what we need is
naturally contained in the results of [18] since they were
derived retaining all masses and, therefore, the limit of
zero momentum transfer, Q2 << (all) m2, is possible.

It is rather easy to take the limit Q2 → 0 for ver-
tices and self-energy functions since they depend only on
this variable. For boxes the procedure is more complex
due to their complicated dependence on s and t invari-
ants. Fortunately enough, ZZ and Zγ boxes form a gauge
invariant subset of the whole result and for WW boxes
one has to replace, in the corresponding limit, only the
ξ = 1 part of the result, which is well defined and simple.
This fact triggered the strategy for a calculation where we
take all contributions but boxes from the Q2 → 0 limit of
the ee → tt̄ form factors and were we have re-computed,
from scratch, box diagrams at Q2 = 0. Note that this cal-
culation was done with the aid of the computer system
described in [19].

For our calculation we compare the APV Hamiltonian
of (2) with its ee → tt̄ analog, (I.10) of [18]:

AZ (0) = I(3)e I
(3)
f

πα

s2W c2W (−M2
Z)

(10)

×
{
γµγ+ ⊗ γµγ+FLL (0) + deγµ ⊗ γµγ+FQL (0)

+dfγµγ+ ⊗ γµFLQ (0) + dedfγµ ⊗ γµFQQ (0)
}
.

Here (0) stands for Q2 = 0 and we write only one argu-
ment since box contributions are excluded. Moreover,

γ+ = 1 + γ5, df = −4|Qf |s2W . (11)

From (2) and (10) we immediately derive a relation be-
tween the APV parameters C1f and C2f and the ee → tt̄
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form factors at zero momentum transfer:

C1f = I
(3)
f [fLL + dffLQ − ∆r (1 + df )],

C2f = I
(3)
f [fLL + defQL − ∆r (1 + de)]. (12)

Here f = u, d and

fLL,QL,LQ = 1 +
α

4πs2W
FLL,QL,LQ(0). (13)

After lengthy but straightforward calculations, we are able
to reproduce the following generic expressions:

C1u = −2I(3)e ρPV

(
I(3)u − 2QuκPVs2W

)
+

α

π

[
Q2

eaevu +
1
3
QuQν

(
ln rWe +

1
6

)

+
2
3
QuQeveae

(
ln rZe +

1
6

)

+CWW
f + 3QuauQeve

(
ln rZu +

3
2

)

+
3

4s2W c2W
vuau

(
v2e + a2e

)]
, (14)

where vf = I
(3)
f − 2Qfs

2
W , af = I

(3)
f are the usual vector

and axial-vector couplings and we introduced the notation
rij = m2

i /m
2
j and a fictitious term with non-zero neutrino

charge in order to have a completely general representa-
tion and where

CWW
f =




1
2s2W

for f = u,

− 1
8s2W

for f = d,
(15)

is a contribution, originating from the WW box, which is
different for u and d channels (direct–crossed).

The other APV parameters can be obtained with the
aid of some simple substitutions:

C2u = C1u|e ↔ u,Qν → Qd
,

C1(2)d = C1(2)u|u ↔ d. (16)

The terms of O (α/π) in (14) are identical to correspond-
ing terms of the MS result. In the sequential order they
are due to the QED vertex in Z exchange, the W abelian
vertex in γ exchange (with neutrino charge), the Z abelian
vertex in γ exchange; the WW , Zγ and ZZ boxes.

The only difference with respect to the MS result is
present in the first term. The factor ρ is almost the same:

ρPV = 1 +
α

4πs2W

{
3
4

[
− 1

s2W
ln c2W − rHW

1 − rHW
ln rHW

+
rHW

1 − rHZ
ln rHZ

]
− 7

4
− ∆ρfer(0)

}
, (17)

where we use instead the full expression for ρfer(0),

∆ρfer(0) =
Σfer

WW (0) − Σfer
ZZ(0)

M2
W

, (18)

contrary to the approximation made above where only the
(leading) quadratic term in mt is retained. The difference,
being proportional to light fermion masses, is numerically
rather small.

However, the main difference with the MS calculations
is confined in the APV parameter κPV for which, in the
OMS scheme, we derived

κPV = 1 +
α

4πs2W

{(
1
6

+ 7c2W

)
Lµ(M2

W ) − 8
9

− 2
3
c2W

− c2W
s2W

(
∆ρbos,F + ∆ρfer,F

) − Π fer
Zγ (0)

}
, (19)

where

Lµ(M2
W ) = ln

M2
W

µ2
.

The gauge invariant Veltman ∆ρ parameter is

∆ρ =
Σfer

WW (M2
W ) − Σfer

ZZ(M2
Z)

M2
W

, (20)

and contains both the bosonic and the fermionic compo-
nents. We explicitly give the bosonic part, ∆ρbos (for the
definition of finite part BF

0 of B0 functions see [17]):

∆ρbos,F =
(

1
12c4W

+
4

3c2W
− 17

3
− 4c2W

)
× [

BF
0

(−M2
W ;MW ,MZ

) − c2WBF
0

(−M2
Z ;MW ,MW

)]
+

(
1 − 1

3
rHW +

1
12

r2HW

)
BF
0

(−M2
W ;MW ,MH

)
−

(
1 − 1

3
rHZ +

1
12

r2HZ

)
1
c2W

BF
0

(−M2
Z ;MZ ,MH

)
−4s2WBF

0
(−M2

W ;MW , 0
)

+
1
12

[(
1
c4W

+
6
c2W

− 24 + rHW

)
Lµ(M2

Z)

+s2W r2HW
[
Lµ(M2

H) − 1
]

−
(

1
c2W

+ 14 + 16c2W − 48c4W + rHW

)
Lµ(M2

W )

− 1
c4W

− 19
3c2W

+
22
3

]
. (21)

To establish a link with the MS calculation we introduce
the usual notion of leading and remainder terms:

κPV = 1 +
α

4πs2W
{(∆κPV)lead + (∆κPV)rem}, (22)

where the leading term contains only ∆ρ and the remain-
der contains all the rest:

(∆κPV)lead = − c2W
s2W

(
∆ρbos,F + ∆ρfer,F

) |µ=MW
,

(∆κPV)rem = −8
9

− 2
3
c2W − Π fer

Zγ (0)|µ=MW
. (23)

Numerically, (∆κPV)lead and (∆κPV)rem are nearly equal
and one might think that the usual leading–remainder
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Table 1. Predictions for QW(Cs) from TOPAZ0 and ZFIT-
TER for MZ = 91.1875GeV, MH = 150GeV and αS(M2

Z) =
0.119

mt [GeV] 170 175 180

Fact/Pert −72.9712 −72.9632 −72.9551
Fact/Non Pert −73.1994 −73.1932 −73.1869
Add/Pert −72.9732 −72.9658 −72.9582
ZFITTER −72.9762 −72.9698 −72.9637
Add/Non Pert −73.2026 −73.1969 −73.1912

splitting, the standard factorization of contributions with
different scales and re-summation (see [17]),

κPV =
[
1 +

α

4πs2W
(∆κPV)lead

]

×
[
1 + fc

α

4πs2W
(∆κPV)rem

]
, (24)

with a conversion factor

fc =
√

2GµM
2
Zs2W c2W

πα
, (25)

is not too well justified for the APV parameter κPV. Note,
however, that the factorized form of (24) is fully consistent
with the MS result (8) if we identify

sin2 θ̂W(MW ) =

[
1 − fc

α

4π
c2W
s4W

∆ρF

∣∣∣∣
µ=MW

]
s2W . (26)

As done before, for Π fer
Zγ (0) we use effective quark masses

which are consistent with a dispersive treatment of Π fer
Zγ

at zero scale.
Finally, we apply mixed QCD

(O (
α2
S + α3

S

))
and LO+

NLO electroweak two-loop corrections for the Veltman
∆ρ parameter. For ρPV we stick with one-loop (non-re-
summed) result (17), since there the notion of leading–
remainder splitting fails completely (numerically it looks
like +3.5 − 3.0 = 0.5). For the same reason, we apply
to ∆ρfer(0) only the mixed QCD but not the electroweak
two-loop corrections, as already done in the first (8). The
latter, as well as the other electroweak NLO corrections
for the remainder terms, although not implemented, are
successively used to evaluate the theoretical uncertainty
in the electroweak sector of the OMS scheme.

4 Theoretical uncertainty in APV

In order to discuss the present level of theoretical uncer-
tainty in atomic parity violation we start with the MS
results for QW(Cs) that are shown in Table 1, correspond-
ing to MZ = 91.1875 GeV, MH = 150 GeV and αS(M2

Z) =
0.119. ZFITTER numbers corresponding to “Add/Pert”
setup are added to the third row of the table.

The mt dependence of QW(Cs) is shown in Table 1
where we register a 0.22 (0.17) per-mill increase for mt

between 170 GeV and 180 GeV and for Pert (Non Pert).
As for the MH dependence we have computed a decrease of
about 0.7 per-mill for MH between 150 GeV and 300 GeV.

The associated theoretical uncertainty is approxi-
mately 3.2 per-mill and it is largely dominated by QCD
effects. Let us consider the main sources of uncertainty.
In the original calculation of Marciano and Sirlin we have
a dependence of the result on light quark masses. This
appearance can be seen in (5) and in the perturbative
treatment of boxes, (6).

From 1983 the accuracy associated to the weak charge
QW has been considerably reduced and we cannot include
it in the list of high-precision PO if the result contains
logarithmic enhancements due to light quark masses.

In their second paper Marciano and Sirlin [10] have
suggested how to go beyond the partonic language. One
should distinguish quark masses in the Z–γ transition and
in Z–γ boxes. Light quark masses, muds, are then fixed to
parameterize the dispersive result for the Z–γ transition
and are not varied anymore in evaluating the theoretical
uncertainty.

Furthermore we have Z–γ box diagrams where quark
masses show up as a consequence of the zero momentum
transfer limit. Here, according to the suggestion of [10] we
split the boxes into a low-frequency part, approximated
with the Born contribution for a physical nucleon (the
(ξ1)

p
B term in (7)), and a high-frequency part (the K term

in (7)) that includes O (αS) corrections where light quark
masses disappear. The mass scale M separating low- from
high-frequency parts is, of course, arbitrary and only sub-
jected to the requirement that αS(Q2) starts to become
small for | Q2 |> M2 and that M > ΛQCD. However, with
the most complete evaluation of αS (up to three loops) we
have found a plateau of stability for the result, i.e. for M
between 0.5 and 0.6 (0.8) K goes from 9.2016 to 9.1737
(8.7818) and QW has a variation of 0.02 (0.3) per-mill.
Therefore we fix 0.5 ≤ M ≤ 0.6.

Instead of varying light quark masses between unde-
fined limits we prefer to estimate the theoretical uncer-
tainty by comparing the perturbative result with light
quark masses fixed to reproduce the dispersive approach
to the Z–γ transition with a non-perturbative ansatz
based on a low-frequency high-frequency splitting at a
mass scale of about 0.5 GeV. Note that when comparing
Bnp(M) with the perturbative factor lnM2

Z/M2 + (3/2)
we find that the perturbative approach overestimates the
effect of about 5.6% (1.9%) at M = 0.5 (0.8) GeV.

Furthermore, the differences in the factorized (4) ver-
sus additive (9) formulation of the coefficients C1u,1d is
approximately 0.05 per-mill signaling that, from TOPA-
Z0’s treatment alone, pure electroweak higher orders are
relatively under control. Another way of testing the elec-
troweak theoretical uncertainty is, as usual, to compare
two different renormalization schemes with the same in-
put parameter set. When we compare ZFITTER in the
preferred setup with TOPAZ0 additive/perturbative we
obtain a relative difference of 0.04 (0.05, 0.08) per-mill at
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mt = 170 (175, 180) GeV. However, an internal evaluation
of electroweak theoretical uncertainties within ZFITTER
(realized by evaluating the effect of the electroweak two-
loop corrections which are not included in the preferred
setup) shows a value of about ±0.25 per-mill. Again, the
conclusion is that theoretical uncertainty is completely
dominated by QCD effects at zero momentum transfer.

Finally, let us define an effective APV weak-mixing
angle by the following relation:

sin2 θAPV = κ′
PV(0) sin2 θ̂(M2

W ). (27)

For MZ = 91.1875 GeV, MH = 150 GeV and αS(M2
Z) =

0.119 we obtain sin2 θAPV = 0.231601 (0.232123), corre-
sponding to a perturbative (non-perturbative) treatment.

Appendix

A Taylor expansions

Here we list all expansions that are needed in order to
reproduce the OMS results. Note that we need at most
terms of O (s). In particular, in the calculation one needs
several expansion of scalar three-point and two-point func-
tions, usually termed C0 and B0:

C0
(−m2

u,−m2
u,−s;mu,M,mu

)
=

1
M2

{
−1 − 7

2
ruM − 37

3
r2uM

− (
1 + 3ruM + 10r2uM

)
ln ruM

+
s

M2

[
1

6ruM
+

13
12

+
52
9
ruM +

673
24

r2uM

+
(

1
2

+
10
3
ruM +

35
2
r2uM

)
ln ruM

]}
, (28)

where M = MZ ,MH and we recall a short-hand notation
for the mass ratios:

rij =
m2

i

m2
j

.

The other expansions read

C0
(−m2

u,−m2
u,−s;md,MW ,md

)
=

1
M2

W

{
−1 − rdW − r2dW −

(
5
2

+ 8rdW

)
ruW − 10

3
r2uW

−[1 + 2rdW + 3r2dW + (1 + 6rdW) ruW + r2uW] ln rdW

+
s

M2
W

(
1
6

[
1

rdW
+

11
2

+ 13rdW +
47
2
r2dW

+
(

1
rdW

+
62
3

+ 97rdW

)
ruW +

(
1

rdW
+

187
4

)
r2uW

+
1

rdW
r3uW

]
+

[
1
2

+ 2rdW + 5r2dW

+
(

4
3

+ 10rdW

)
ruW +

5
2
r2uW

]
ln rdW

)}
, (29)

C0
(−m2

u,−m2
u,−s;MW , 0,MW

)
=

1
M2

W

[
1 +

ruW

2
+

r2uW
3

+
s

6M2
W

(
1
2

+
1
3
ruW

)]
, (30)

C0 (0, 0, 0;MH , 0,MZ) = − 1
M2

Z − M2
H

ln rHZ, (31)

BF
0

(−m2
u;MW , 0

)
= −Lµ(M2

W ) + 1 +
1
2
ruW +

1
6
r2uW, (32)

BF
0

(−m2
u;M,mu

)
= −Lµ(M2) +

(
ruM + 2r2uM

)
ln ruM + 1

+
1
2
ruM +

5
3
r2uM, (33)

B0p

(−m2
u;M,mu

)
= − 1

2M2 ,

BF
0 (−s;m,m) = −Lµ(m2) +

s

6m2 , (34)

BF
0 (−s;m,M)

= 1 +
[
M2Lµ(M2) − m2Lµ(m2)

] 1
m2 − M2

+s

[
m2 + M2

2(m2 − M2)2
− m2M2

(m2 − M2)3
ln

(
m2

M2

)]
. (35)

References

1. G. Montagna, O. Nicrosini, F. Piccinini, G. Passarino,
Comput. Phys. Commun. 117, 278 (1999); G. Montagna,
F. Piccinini, O. Nicrosini, G. Passarino, R. Pittau, Com-
put. Phys. Commun. 76, 328 (1993); Nucl. Phys. B 401,
3 (1993)

2. D. Bardin, M. Bilenky, P. Christova, M. Jack, L. Kali-
novskaya, A. Olchevski, S. Riemann, T. Riemann, Com-
put. Phys. Commun. 133, 229 (2001)

3. C.S. Wood et al., Science 275, 1755 (1997)
4. N.H. Edwards et al., Phys. Rev. Lett. 74, 2654 (1995);

P.A. Vetter et al., Phys. Rev. Lett. 74, 2658 (1995)
5. D.M. Meekhof et al., Phys. Rev. Lett. 71, 3442 (1993)
6. M.J.D. MacPershon et al., Phys. Rev. Lett. 67, 2784

(1991)
7. W.R. Johnson, S.A. Blundell, Z.W. Liu, J. Sapirstein,

Phys. Rev. A 37, 1395 (1988); S.A. Blundell, In Relativis-
tic, quantum electrodynamic, and weak interaction effects
in atoms, edited by E. Johnson et al., 285–304 (see Book
Index); S.A. Blundell, J. Sapirstein, W.R. Johnson, Phys.
Rev. D 45, 1602 (1992); S.A. Blundell, W.R. Johnson, J.
Sapirstein, In Precision tests of the standard electroweak
model, edited by P. Langacker, 577–598

8. D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000)
9. W.J. Marciano, A. Sirlin, Phys. Rev. D 27, 552 (1983)
10. W.J. Marciano, A. Sirlin, Phys. Rev. D 29, 75 (1984)

[Erratum-ibid. D 31, 213 (1984)]; W.J. Marciano, J.L. Ros-
ner, Phys. Rev. Lett. 65, 2963 (1990) [Erratum-ibid. 68,
898 (1990)]



104 D. Bardin et al.: Atomic parity-violation and precision physics

11. G. Passarino, M. Veltman, Phys. Lett. B 237, 537 (1990)
12. J. Erler, Global fits to electroweak data using GAPP, hep-

ph/0005084
13. J. Fleischer, O.V. Tarasov, F. Jegerlehner, Phys. Lett. B

319, 249 (1993)
14. B.A. Kniehl, Nucl. Phys. B 347, 86 (1990)
15. K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, Phys. Rev.

Lett. 75, 3394 (1995)
16. G. Degrassi, P. Gambino, Nucl. Phys. B 567, 3 (2000)

17. D. Bardin, G. Passarino, The standard model in the
making: Precision study of the electroweak interactions
(Clarendon, Oxford 1999) p. 685

18. D. Bardin, L. Kalinovskaya, G. Nanava, An electroweak
library for the calculation of EWRC to e+e− → ff̄ within
the topfit project, hep-ph/0012080

19. G. Passarino, D. Bardin, L. Kalinovskaya, P. Christova,
G. Nanava, A. Andonov, S. Bondarenko, contributors to
CalcPHEP, see site brg.jinr.ru; a write-up in preparation


